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By perturbation methods we derive the behavior of the Thomas-Fermi equation of state near

both the “hot-curve” and the “cold-curve.” By Padé methods we derive efficient computational

formulae for the coefficients in these expansions.

We are able to meld all these results into a

structurally correct representation of the Thomas-Fermi fluid pressure. We indicate how this repre-

sentational structure can be used to construct the equation of state for realistic materials over large

ranges of temperature and pressure. We also discuss the computation of the degree of ionization

with and without the exchange correction.

Suggested PACS index numbers: 5.70.Ce, 5.30.Fk, 64.10.+h, 67.20.+k

I. INTRODUCTION AND SUMMARY

The statistical theory of the atom due to Thomas
and Fermi,! with modifications due to Dirac? has been
used for a long time as a basis for computing the equa-
tion of state of electron-ion fluids.® Although it has been
recognized for some time that this model has a number
of quantitative inaccuracies, e.g., that its zero tempera-
ture behavior is in bad agreement with the experimental
binding energies,* it has also been the case that a lot of
correct physics is built into the model and we think that
the study of this structure may well be enlightening in
order to construct better equations of state. In a previ-
ous paper® we began this study. We showed that in the
“high-temperature limit” that the Thomas-Fermi model
reduced (correctly) to the ideal Fermi gas. That is to
say that when the Debye screening length, which is pro-
portional to €?/kT is small compared to the interparticle
spacing, that for any de Broglie length, (proportional to
h/vmkT) the Thomas-Fermi model reduces to the corre-
sponding ideal Fermi gas limit. (Here and throughout we
denote the electronic charge by e, Boltzmann’s constant
by k, the absolute temperature by T', Planck’s constant
by h and the electron mass by m. This result completed
the necessary investigations of the various limiting re-
gions of the equation of state, because it was already
known that:

(1) In the low density limit at fixed temperature,
both the Debye and the de Broglie lengths go to zero.
(Here and subsequently in this catalogue of cases when
we refer to the Debye and de Broglie lengths we will mean
in units of the interparticle spacing.) Also the atoms
become completely ionized and the “electronic contribu-
tion,” for example to the pressure, becomes the ideal gas
law,

PQ = ZNKT, (1.1)

where we denote, here and throughout, the pressure by
P, the volume by 2, the number of atoms by N and
the nuclear charge which is also taken as the number of
electrons per atom by Z. This case agrees precisely with

the zero de Broglie length limit of the hot curve. By
the hot curve we mean the limit as T" — oo for fixed de
Broglie length.

(ii) For the zero temperature limit at fixed density
(both the Debye and the deBroglie lengths tend to infin-
ity), the “electronic contribution” to (again for example)

the pressure, becomes the cold curve,?

PQ/N = Z3(ZQN), (1.2)

where ¢(z) is a well defined function. By the cold curve
we mean the zero temperature isotherm.

(i) In the limit as the de Broglie length goes to
infinity, the pressure becomes independent of the tem-
perature. This result is explicitly the case for the hot
curve and gives the degenerate electron gas pressure. In
this limit the kinetic energy scales as the density to the
five-thirds power and so dominates the potential energy
which only increases like the density to the four-thirds
power. Thus the limit becomes independent of the De-
bye length. This situation is illustrated by the fact that
for T' = 0 [case (ii) above] we get the same high-density
limit as we do for the hot curve.

(iv) There only remains to consider the case where
the temperature goes to zero when the density goes to
zero. Here we have a complicated region that unfortu-
nately is physically not well illuminated by the Thomas-
Fermi model as the behavior here depends on phase tran-
sitions, ionization potentials, etc. We do not expect the
present study to adequately represent the physics of this
region.

We have spoken of electronic contributions as though
they were separable from the ionic contributions as inde-
pendent contributions to the pressure, which of course
they can not be, any more than we can physically sepa-
rate the radiation pressure from the rest of the system.
We make this artificial separation as a matter of conven-
tion. For the purpose of this paper, we presume a treat-
ment of the ionic contributions which merely assumes
that they obey Maxwell-Boltzmann statistics and add an
ideal gas contribution to the pressure for them. In the



spirit of the Thomas-Fermi approach, we think of Z elec-
trons encased in an impermeable sphere around a fixed
nuclear center, exerting the pressure on the surrounding
spherical shell. The purpose of the study is to gain in-
sight into the structure of the Thomas-Fermi equation of
state, rather than to pretend that all aspects are physi-
cally realistic.

The principal result that we obtain is a represen-
tational structure which embodies the correct behavior
on and near both the “hot-curve” and the “cold-curve,”
as well as smoothly interpolating in a structurally cor-
rect manner between them. This general representational
structure appears to us to be adaptable in a straightfor-
ward manner to real substances.

In the second section, we compute by perturbation
methods the leading corrections in powers of the ratio of
the Debye length to the interparticle spacing for the ideal-
Fermi-gas electron-pressure in the Thomas-Fermi model.
In the third section we show how the coefficients of this
expansion can be re-expressed in terms of the ratio of the
de Broglie length to the interparticle spacing, and how
they also lead to the coefficients in the expansions of the
Helmholtz free energy and the internal energy. In the
fourth section, we show how these coefficients can be ef-
ficiently computed by direct Padé approximant methods.
In addition we show how to compute the degree of ioniza-
tion (no exchange correction case) from the pressure. In
the fifth section, we provide a description, adequate for
our purposes, of the Thomas-Fermi cold-curve and the
leading correction in temperature to it. In the sixth sec-
tion we develop our global representation of the pressure
for the Thomas-Fermi model and discuss its comparison
with direct numerical computation of the model pressure.
In the final section we discuss the way in which this rep-
resentation can be used to generate equations of state for
realistic substances. We also evaluate the exact exchange
correction and discuss the computation of the degree of
ionization with the exchange correction included.

II. PERTURBATIONS OFF THE HOT CURVE
OF THE SOLUTION OF THE THOMAS-
FERMI INTEGRO-DIFFERENTIAL
EQUATION

In a previous paper® we showed that the limit of the
Thomas-Fermi theory of the thermodynamic behavior of
gases when the Debye screening length is negligible com-
pared to the interparticle distance is just the ideal Fermi
gas. In this section we compute the leading perturbation
corrections to this limit in terms of a small, but non-zero
Debye length. As a reminder of the basics of Thomas-
Fermi theory, we give the expression for the density,

_/°° 2. Awp’dp/h®
P= o exp[(p?/2m —eV)/kT +n] +1’

(2.1)

where —eV is the potential energy. It is convenient to

define the auxiliary functions

[~ y"dy
Inl) = /0 exp(y —n) +1° (22)

The Poisson equation is then used to determine V(r). It
yields

d? 1672

V() = 127 A4

kT

r dr?

e(2mkT)? I, (
(2.3)

The boundary conditions for this equation are that
71411)1% rV(r) = Ze, (2.4)

where Z is the nuclear charge, and the integral of p(r)
over a sphere of radius rp is equal to Z for electrical
neutrality. If Q is the volume and N is the number of
atoms, then

4
Q= ?”rgN, (2.5)

defines the “spherical atom” approximation which is used.
The idea is that regularly spaced atoms can be enclosed,
each in its own individual region of space which is not
so different from a sphere, and that these isolated atoms
interact with their neighbors only through their surface
electron behavior.

It is convenient to our purposes to define the con-
stants,

K3 ; 1 |
c= ( 1) o T™ 7, (2.6)
32n2e2m(2mkT)z
and .
a=Ze[kTcox T™1. (2.7)

Now, following Baker and Johnson,® we make the change

of variables to the appropriate high-temperature ones,

r

O = —71q
cal/&"

1(0)/o = (eV(r)/kT) —n. (2.8)

The equations and boundary conditions now become,

Py v
T =atory (1), (2.9)
7(0) = f, and (2.10)
d
d—7 = 1, at the boundary. (2.11)
a g

For ease of exposition, we will derive the leading or-
der correction first. It is of the order of an exchange
correction, but as Thomas-Fermi theory does not have
the exchange energy in it, we identify this correction as
the Thomas-Fermi theory version of the Debye-Huckel
correction. After this term is calculated we will go on
to compute the next order perturbation term off the hot
curve, which is of the order of the standard Debye-Huckel
correction. It turns out to vanish. We finish up this



section by computing one additional order in the pertur-
bation expansion. A handy identity which we will use
is,

Il(n)=nl,_1(n), n>0, (2.12)
for the functions defined in (2.2). The solution® to (2.9-
11) for @ = 0 is v = Ao, and the value of A is determined
by

3n3Z

1672[rv2mkT)?
For a perturbation, we let v = Ao + €(o) where € is
supposed small when « is small. Equation (2.9) becomes,

1 (4+40)

—atoly(A)+ Jat Iy (A)e(o) + ...,
(2.14)

= I (A). (2.13)

e”(a) =adol

m|H

and (2.10) becomes

€(0) = af. (2.15)

Hence to leading order in « by (2.14-15) we get the terms,

2

_Uslé(A)+o(a%). (2.16)

e(U):a%+BJ+0-Uz+a

The term B drops out of (2.11) so we must impose the
normalization directly by integration of the number den-
sity,

(2mkT)?

4 (o)
p= T (44 77).

over the sphere. Thus expanding 1 in € we get,

ImkT\? [ 1{a?
7 = 167%c* Li(A)+= —
67rca< % )/0 E( )+2<a

(2.17)

+B+°2 oo,  (2.18)

"1 (A))I_gA)

where o0 is given from r; by (2.8). Now A is determined
by (2.13) such that the first term on the right-hand-side
exactly cancels the Z, so the rest of (2.18) must vanish
by itself. Thus, doing the integrals of ™ we can solve for
B and it is,

(2.19)

- 20’1, 30

According to Feynman et al.®, the equation for the pres-
sure, P, in terms of surface quantities is,

PQ 3 3
_zgsz(—’;” ) ;<A+—+B
c°Q 2

N
Z 2 3
3oy . 9 Ty
I.(A) | = 5ZkT
LN )) ()
2 2

I3(A)

. (2.20

to leading order. This expression reduces to

PQ rs

— = ZZkT(

N c3 a) I3(4)

9I§(A) Ze?
1= 2015 (A) (W) +] (22

where the first term gives the ideal Fermi gas pressure
and the second term gives the first correction to it.

In order to compute the next order, we must con-
sider the remainder after subtraction of the above re-

sult. The key part is the behavior of I1(A + (e/0)) —

I (A)— ;I_ 1(A)e/o in the normalization integral which
determines B of (2.16). The reason that this part might
not be expanded in a straightforward manner is that as
o — 0, ¢/c = oo. This effect could be important when
we reach this order. The nonexpandable part of the con-
tribution to the integral in (2.18) beyond the ideal Fermi

gas contribution becomes,

/Oob [I%(A+a3/a) I, (A) ]Jda
=/ab02da % [
0 exp(y —aS/U) +1
—m . (2.22)

where A = A+ (e(0) —a3)/o. Let us set y = n+a3 /o in
the first term in the y integrand and y = 7 in the second.
Then (2.22) becomes,

dn (n+as /o)

43 0 / 2 %

2
:/ o”do / , —
0 —a3/o exp(n—A)+1

+/°° dn[(n+ ot /o) —n?]
0 exp(n—A) +1

(2.23)

The second integral in the large square brackets is di-
rectly expandable in a3 and gives the first order cor-
rection to the ideal Fermi gas which we have calculated
above. Thus if we explicitly make this separation and if
we let & = —n/a% and reversing the order of integration
in the first integral, (2.23) reduces to,

Tp
:%a%/ O'dO'I_%(A)
0 3

0o min(op,1/€) _ %
+a/ df/ (0 —&0?)20do
0 exp(—asf A) +1

1

+/0bgzda/ dn((n+ a3 Jo)} —n¥ = Lad /(n}o)]

exp(n — A) +1 (2_24)




where as we remarked above the first term is the usual
direct expansion term. The second and third terms (pro-
portional to «) are the Debye-Huckel order correction
that we seek. We begin by concentrating on the second
term. Since, if we first do the integral over o it makes the
integral over £ convergent without reference to the expo-
nential in the denominator, we can set @ = 0 directly in
the exponential, to leading order. If we make the change
of variables, s = o€ and t = £oy then the part of (2.24)
proportional to a becomes

S min(¢,1)
’YDH=/ d—st/ (s—sz)%sds.
o t2 Jo ) )
(2.25)

The quantity ypg is now just a number. We may rewrite

it as,
1
d n
’YDH:/ ?57/ (5—32)%5035
0o M2 Jo
e d?7 ! 3 1
+ ([ ) ([ fa-ata)

1

dn K 2y 1 7r
= —“Zd J—
foat o=t g

as the second integral now factors into the product of a
beta function integral and a simple power integral. Now
if we let s = 17 in the first integral and integrate first over
7 and then over 7, which again involves a beta function
integral, we get

3
aol YpH
l4+e 4’

(2.26)

4 = T 4
=———+4—=_. 2.27
E=5750 Mg (2:27)
Next we will do the third term in (2.24). If we do
the integral over o first and make the change of variables
T = nab/a%, then we get, as we did going from (2.24) to
(2.25),

3 1
aa’b2 o0 3 3(1+2$)(1—|—1‘)5 3 1
b 1 — =
31+ e 4) J, [(1+)? 8z 1"
s 3 , ; 1dz
— 2% + —log(1+2(z +2%)7 + 2@')}: (2:28)
1623 T

We have choosen to evalutate this integral numerically.
To ease the labor it is convenient to add and subtract the
identity,

3 [~ dr 3 [~ dx
— = [ log(1+ 82 5+—/ —
3 ), o8l 313, 22 (1+7)

=(-2"1 +1.5)x.

(2.29)

The result for the third term of (2.24) (at least to 6 fig-
ures) is

A (2.30)

which exactly cancels the results of the second term! This
cancellation could have been seen by the direct expansion
of (2.22) plus an argument bounding the order in @ of the
large €/o effects on (2.22) to show that the next order
term is of order a. Since we are studying the structure,
and in more realistic cases we do not expect that the
Debye-Huckel order correction will vanish, we will con-
tinue to carry this term is subsequent calculations, but
with a zero coefficient.

To obtain the a3 order term we return to (2.14)
which we have now seen to be adequate to this task.
If we substitute a power series in o and solve for the
coefficients, we get

2 1 4 2
€(c) =a’® + Bo+ ZaSI_ (Ao

1
2

1 2 1
+ <6a51%(A)+Ea3 _%(A)B) 0'3

1 4 . .
+Twa3I7%(A)I%(A)U +0(a3), (231)

which improves the result in (2.16).

If we now gather up these results and put them back
as the next terms in (2.18), we find B through order a3
to be,

3 a%h A)o? a3l _i(A)o
o fet @@ et
20 30 16
a 2 -1
aif_%(A)I%(A)crg - a31_%(A)O"§
1680 20

- Sa -0 . (232)

3071 1 (A)(1+e4)

It is useful at this point to introduce a variable which
measures the relative strength of the Coulomb interac-

tion,
Ze? H ac i
= ==} . 2.33
Y (rka) (rb) ( )
In terms of y we find easily that oz/obg = y°. Hence,
substituting for B in (2.31), we obtain,
o 3 , 97 1 1(4) . ,
=—— — 2 . (2.34
€(@)/o0 = —15Y" + 3300 ) +o(y"). (2.34)

Using these results in the equation for the pressure, anal-
ogously to (2.20), we extend the expansion to give,

(4) 3,
A4) ~ 107

PQ 21
ZNET ~— 31

0-8y3
I (A)(1+e4)
971 1 (A)y*
T 2s00r,(4) T

(2.35)

III. THERMODYNAMIC FUNCTIONS
NEAR THE HOT CURVE



In addition to the pressure, which we discussed in
the previous section, there are a few more quantities of
interest in practical applications. Particularly there is
the Helmholtz free energy A, the internal energy U, and
the number of ionized electrons, Z; per atom. This latter
quantity is a little hard to define with precision. The def-
inition which we adopt here is a common one. Namely,
the density of electrons at the surface of the atom is mul-
tiplied by the volume of the atom and this quantity is
taken as the number of ionized electrons. This quantity
is needed for all values of density and temperature and
not just near the hot curve, but turns out to be a func-
tion of only a single variable and so for convenience we
discuss it here. This number is conveniently computed
as the Z in equation (2.13), except that A in that equa-
tion is now the boundary value of v/o defined by (2.8).
We may deduce this value from the pressure by means of
(2.20). We may rewrite that equation as,

pPQ ri Vo
=27k 2 I (2. 3.1
N 9 <c3a> 2 <0’b (3-1)

It is desirable to introduce a convenient variable analo-
gous to that for the ideal Fermi gas, which by (2.13) can
be expressed as,

Z;N )3 2 '
G = 20 \/7—1_[% (717/‘717)7 (3'2)
where
hZ % ) .
A= <27r'ka) ' (3:3)

Using these variables, we can rewrite (3.1) as

(/b)

21
e il (SN CE)

Z:NET — 31

P h?
2ET \ 2rmkT

The idea is to find /03 and substitute it into (3.2) and
so compute the number of ionized electrons per atom.
This can most conveniently be done, if we revert (3.5)
and back substitute for ¢; in (3.2), thus giving,

Z_=87rr§ 2emkT %fq P h2 3
! 3 h2 2T | 2emkT '

(3.6)
We have now obtained a formula to compute directly
from the pressure, density and temperature, a thermo-
dynamic expression for the number of free electrons per
atom, independently of where the pressure formula came
from. (The inclusion of exchange interactions in the uni-
form electron gas would modify the result.) The physics
behind this result is that it produces that density of

ST T

or

wjw

= Gi9(G) = f(G)- (3.5)

uniform-Fermi-gas electrons which are in pressure equi-
librium with our finite-radius, spherical Thomas-Fermi
atoms at the given temperature. We remark that the
limiting behavior is such that as T' — 0 the resulting
expression is a formula for Z; in terms of P and p with
finite coefficients, as it should be.

Next we consider the Helmholtz free energy, A. Ther-
modynamic theory tells us that

0A 0A
where S is the entropy. We may integrate the first rela-
tion in (3.7) to obtain A from P as

z O . .
A:/Q P(Q,T)Q7 + Ay (D), (3.8)

The function Ay (T') is determined by noting that the
system is equivalent to an infinitely dilute Fermi gas in
the infinite volume limit and taking Q large enough. In
order to carry out this integration, let us rewrite, (2.35)
in terms of the variables y of (2.33) and the de Broglie
density,

(= ZNN _ Gac _ 2
29 T Al T Jr

which we now consider as the definition of ¢ and A(()
with A defined by (3.3). We get

I (A(Q),  (39)

ZZSI:T = 9o (C)+91(C)y+gz(C)y2+gs(C)y3+g4(C)y4g-i(-)),
where by (2.35), [note the comparison with (3.4) abolve],
215 (A(Q))
9(¢) = m7
g1 (() = 05
gz(C)=—%, (3.11)

8.0 211 (A(())
3 L‘I%(A(o,)[l +exp(=A(¢))]
80 [m]

3Vl ¢ |7

971_3 (A(C)
~ 28001, (A(¢)°

g3(¢) =

g4

Noting that ¢ = 6y°®/(y/7a?) and that dQ/Q = —d({/¢
we may integrate (2.35) to give,

A, T) = Ay (T)

4 ¢ . _
=ZNkTZ{ij/ g,-(T)TéldT}yur...
=0 L¢e o

(3.12)



Now Baker and Johnson® give the result for the ideal
Fermi gas,

Aideal = ZNET

C T
mg<—143£[mmﬂ-u%¢7 (3.13

and so we get for the Helmholtz free energy,

¢ y4
A(Q, P) = ZNKT 1og<_1+/ [0 (2) — 1)
0 z
+§: i/c ()T dr oyl e (3.14)
j=1 C% 0 . ! .

Finally in this section we give the results for the
internal energy, U. From the last two relations in (3.7),
we can compute from (3.14) that it is,

A
UQ.T)= A-T55| =3PQ (3.15)
S < 4 )
—1ZNET | {CJ_‘/ gj(r)ré ! dT} g4
j=1 L6870

IV. EVALUATION OF THE COEFFICIENTS
OF THE PERTURBATION EXPANSION
OFF THE HOT CURVE

A number of functions of the de Broglie density, (
(3.9) [and ¢; (3.2)] were defined in the previous section.
We need convenient methods to assign numerical values
to them. The basic information which we will use was de-
rived by Baker and Johnson® who from the known series
for the ideal Fermi gas properties in powers of

with A defined by (2.13), derived the series expansions in
¢ through the 36th order for z({) and for PQ/ZNET. In
addition they developed a representation, good to about
0.1 per cent uniformly in ¢ for the second of these quan-
tities. As a reminder to the reader, it is,

9(¢) ~ (4.2)

1+ 0.61094880¢ + 0.12660436¢ + 0.0091177644¢37 7
1+ 0.080618739¢ ’

where g({) is as given in (3.4) and is also go(¢) of (3.10-
11).

The next quantity that we need is for the number of
ionized electrons and is f~!(z) defined by (3.5-6). Using
the aforementioned series expansions, we can revert the
series, and by the method of Padé approximants,’ de-
duce representations. As this method converges quickly
for our case we can determine the accuracy of low or-
der representations by comparison with the higher order
ones. We have chosen to build in exactly the asymptotic
value as £ — o©

f*ub<E(§%)i%é )

This asymptotic value, and subsequent ones, are derived
from the known asymptotic value of [ 1 (A) and relation
(2.12). We find that, to within about 0.2 per cent uni-
formly in z,

z=¢e4, (4.1)
f_l( ) 14 1.3611484z 4 0.58267802z2 4+ 0.082982138z% 4 0.0024019352z* ¢ (4.4)
)~ . .
1+ 1.8030901z + 1.1564449x2 + 0.31377482x3 + 0.032693781x% 4+ 0.00080776954x°

The next quantity that we need a representation for
is the Debye-Huckel order correction for the Thomas-
Fermi model at general de Broglie density. The rele-
vant function is Y (¢) as defined by (3.11). Again the
aforementioned series allow us to construct the necessary
Taylor series to use Padé methods to derive an accurate
representation. We may rewrite Y ({) directly in terms
of the quantities for which the series are given as,

Y(() = +<¢d' — 4.5
= 6O+ O sy 9
where this expression was derived by the use of (2.12),
(2.13), (4.1) and the thermodynamic consistency formula
of Baker and Johnson,®

dlog Z(C)

g +¢d'(¢) =¢ ic

(4.6)

We again build in the asymptotic results,
2 (3y7\7 2
v =3 (2) ¢ (47)

We find, accurate to about 0.1 percent uniformly in (,
that,

Y(¢) = (4.8)
1+ 0.19232340¢ + 0.020189866(> 5
1+ 1.0710031¢ + 0.36793047¢2 + 0.038559806(3

¢

The coefficient for the term of order y* given by (3.11)
can be written as a function of { by means of (2.12) and
(4.6) as

2880 1

7 9= 9(¢) +¢d' () (4.9)



Again the right hand side can be shown to be asymptotic

to ,
3 4 ER
5<m> ¢

We find, accurate to about 0.1 percent uniformly in (,
that,

(4.10)

90+~ [ =8)] g

vs(0) (4.11)

where

ug(¢) =1+ 1.2361522¢ + 0.54327035¢>
+9.7985998 x 1072¢* 4 6.1912639 x 1073¢*

+ 1.6191557 x 107*¢°, (4.12)
and
v3(¢) =1+ 0.17549205¢ + 1.1833437 x 1072¢?
+ 3.0923597 x 1074¢3. (4.13)

In order to compute the Helmholtz free energy and
the internal energy, we need the integrals in (3.14). That
for g; is of course 0. That for g» is elementary, but we
include it for completeness,

1 /¢ 2 9
— “Sdr = ——.
3 ), o=

The integral for g3 can be re-expressed by the use of form
(4.5) and an integration by parts as,

(4.14)

8-0

Lo 1 8.0

c_/o gs(T)7 dr——3ﬁZ(<), (4.15)
where,

og(l+= < dr
Z(C):M+2;/O log(l+z(7‘))i—%. (4.16)

Again using the aforementioned series, and the asymp-

tote,
Z(¢) x4 <¥) ’ ¢T3, (4.17)

we derive the representation, accurate to about 0.1 per-
cent, uniformly in ¢,

20~ [24] g

.ty (4.18)

where,

p6(¢) =8 + 8.9135838¢ + 3.7226651¢* 4 0.71393824¢>
+6.0876790 x 107¢* 4 1.7586257 x 107°¢°
+ 4.0529048 x 1075¢°, (4.19)

and

q7(¢) =1 + 1.4070911¢ + 0.78167135¢ + 0.21585403¢>
+ 3.0398456 x 107%¢* 4+ 1.9605712 x 1073¢°

+ 3.9279799 x 107°¢% 4 3.5835548 x 1078¢7.
(4.20)

We will defer the derivation of the representation of the
y* term to another time, since it will turn out that we
are unlikely to need it.

Special to the Helmholtz free energy, but not re-
quired for the internal energy is the integral of (3.13).
The asymptote is,

/04[9(7)—11?%(?)%4%.

We can again derive by the method of Padé approximants
the following representation, accurate to within about 0.1
percent uniformly in

S dr o [re(Q]°
NG NC[&(C)] ’

(4.21)

(4.22)

where

r6(¢) =5.5242716 x 1072 4 8.3296356 x 10*¢
+ 5.5685767 x 107°¢% 4 1.9354761 x 107%¢3
+3.4637431 x 1078¢* 4 2.4471328 x 1071°¢®
+ 2.8694904 x 10713¢8, (4.23)

and

s7(¢) =1 + 0.17878444¢ + 0.014195594¢>
+6.1616726 x 10*¢® 4+ 1.5056878 x 10 °¢*
4 1.8932201 x 107 7¢% 4 9.2069935 x 10~ 10¢®
+ 7.5175901 x 10713¢7. (4.24)

V. EVALUATION OF THE THOMAS-FERMI
THEORY COLD CURVE

The other limit for which information is known is
the so-called cold curve. This region has been much more
extensively studied than the hot curve. It is well known
that the Thomas-Fermi cold curve leads to excessively
high pressures in the region of normal material densities.
It is not our purpose to provide a “good” representation
of this cold curve, but only an adequate one to facilitate
the main point of this article which is to study the struc-
ture of the Thomas-Fermi equation of state. To derive
the equation for the cold curve from our starting point
in Sec. II, (2.6-11), we need the change of variables,

et () rimin 9= 2 [

Ccx

(5.1)



Then (2.9) becomes,

=it (0 ) ) 2+ (4) o2

—Q

as @ — oo. With this change of variables, the boundary
conditions (2.10-11) can be expressed as

$(0)=1, and (5.3)
9 = ?, at the boundary. (5.4)
de =z

It is easy to verify that

by =10 (55)

is a solution of (5.2) when @ = oo, however it does not
obey the boundary conditions. Sommerfeld” has given
the asymptotic behavior of the solution of (5.2) for large
z in the case of the atom where (5.3) holds and (5.4) is
replaced by lim,_,o ¢(z) = 0. His result is,

() = <1 + (\/%) _a_) _a+/2, (5.6)

_TxVT3  7.77200187,
-2 7 —0.77200187.

where

as (5.7)

For the case of all the electrons in a large but fi-
nite sphere, we need to impose the boundary condition
(5.4). Suppose that ¢4(x) is the atomic solution. It is
convenient to use

p(z) = n(z)pa(z), (5.8)
which converts (5.2) for @ = 0 to
&Py 2l dy  ($a\? [ s ,
g2t g dn <—) (v =n) 69

If we make the further transformation, £ = logz, then
we get

d’n 24 \ dn _
(145 =

Wl

(#°94)* (n* —n). (5.10)

When z is large, (5.10) reduces to an equation which is
independent of the independent variable,
d?n

The picture now is that when z; [the radius of the sphere
ry as transformed by (5.1)] is large, then we have over
most of the range of z the result that the solution n cor-
responds to that for the atom. However,  must increase

some as we near zj to get in all Z electrons and compen-
sate for the small number of electrons that lie beyond
in the atomic solution. As (5.11) is independent of the
origin, we might as well normalize £ = log(z/zp) so the
boundary is taken for the origin. As we are treating the
asymptotic case £, — oc, we derive in this picture the
boundary conditions,

d
1, Y —tpate=0.

dg§
If we now make the further transformation on (5.11),
p(n) = ', then we obtain a first-order, nonlinear ordinary
differential equation,

n(—oc) = (5.12)

pp' = Tp+12(n— 7]%) = 0. (5.13)

Using these boundary conditions, we have solved (5.13)
numerically using a four-point Runge-Kutta method with
256 steps to run from n =1 to

n=mo =n(0) = p(n)/4 (5.14)
We find that

no 2 1.9958, (5.15)

which is a universal constant that connects the asymp-
totic behavior of the atomic and the pressurized solutions
in the form ¢(zp) X noda(zs). We will apply this to (5.6)
to yield,

- —a_\ —a+/2
B(z) < Mo (1 + (\/1’;_4) ) : (5.16)

which should be good for large enough values of ;. Rath-
er than attempting to derive an accurate, analytic rep-
resentation of the Thomas-Fermi cold curve function,
which is highly unrealistic in any event, we have found if
we use the cold curve generated by the Liberman Thomas-
Fermi-Dirac Los Alamos equation of state production
code® run in Thomas-Fermi mode, that the Thomas-
Fermi cold-curve ¢ can be fit to within a few percent.
To do so we note that we should have ¢(zp) x 1/z; as
zp — 0 and if we use the Sommerfeld variable to correct
(5.16), we are lead to

| . pa \ —1/(20_)
d(zp) &0 (1 +az,” + bzz _)

x <1+ (\S/wlbﬂ) a>_a+/2, (5.17)

where the fit yields ¢ = 1.59233 and b = 1.06595. This
corresponds to 100% of full ideal Fermi gas pressure for
infinite density (zy — 0), which we expect as the kinetic
energy dominates the Coulomb energy at infinite density.
In terms of ¢y = ¢(zp) the cold-curve pressure is,

_ 7 []*
© 10wt |z

(5.18)



In addition to the cold curve, it is useful to know in
what way it is approached in T'. This information can be
derived from the asymptotic expression, (Huang?)

I(n) = Eng [1 + 4. ] +0(e™"), (5.19)

3 8n?

and similar expressions for I3 (n) derived from (5.19) by

means of (2.12). Huang? gives the change in the pressure
as a function of ¢. It is

ZZ 2

P = ¢ ﬂ
107 ut \

We have checked this correction against the Liberman

code for cases where the correction should be a few per-

cent and find agreement with that predicted by the code

within the accuracy of our cold-curve fit. This correction
is proportional to T2.
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VI. GLOBAL REPRESENTATION OF THE
THOMAS-FERMI FLUID PRESSURE

In order to take advantage of the results that we
have obtained in the previous sections, we again use the
method of Padé approximants.® The problem to be solved
is that we have, for small y (2.33), an expansion of the
pressure (3.10-11) in powers of y with the coefficients ex-
actly known functions of ¢ (3.9). In addition we know
that in the limit as the temperature goes to 0, we must
have a non-identically zero function of the density. Since
both y and ¢ go to infinity in this limit, it must necessar-
ily be the case that the coefficients g;(¢) of (3.11) must
have the property,

lim g;(()¢Y™27% = §; < o0, (6.1)

(—ro0

in order that a series of finite terms in ré remain. It
is straightforward to verify that the functions given in
(3.11) do in fact have this property, as can be noted ex-
plicitly from the representations given in Sec. IV. In
addition we know that the leading correction to the zero
temperature limit is proportional to T2 or a~ % with ap-
propriate density dependent coefficients. In order to im-
pose all these conditions, it is useful to rewrite, as we did

at (3.11), 1
v= (%) o, (6.2

which allows us to convert our series (3.10) in y into
one in a%, but without the nice properties that the co-
efficients are of order unity for small {. Now we form an
[8/8] two-point Padé-approximant-like form, on which we
impose the conditions that it match the series expansion
terms (3.10) through order y3,

PQ o ,
7=0

for a small, and
P = Hy(ry) + Hy(ry)a"5, (6.4)

for « large, where the H;(rs) are given by (5.20). Such a
form can be given as,

p_ ZNKTg(Q)
Q
w 3 i(C). 4 Hg(r 8
- r 5 X5, 58 + g (- wd]

1 3 9i(Q) Ho(rp)(l—w) 8 ’
=15 Y ¥ + THee J (6.5)

where we have partially re-expressed it in terms of y for
convenience, and,

_ Hy(m)R
w= Wga(()' (6.6)

This particular form has the advantage, not only of sat-
isfying the conditions (6.3-4), but also with the signs
known to occur for the different coefficients it has both
numerator and denominator each consisting of a sum of
all positive terms. Form (6.5) is not a true Padé ap-
proximant because we have imposed only 13 conditions
by means of (6.3-4), while 17 conditions are required to
determine an [8/8] Padé approximant.

If in addition we include the y* term, then (6.5) is
modified so that

B (20)- % () oo

J=2

We have also tried this form, but the correction does not,
as a practical matter, justify the extra effort to obtain it.
It appears to be beneficial only in those regions where
(6.5) is already excellent. It is also helpful where (6.5)
does a very poor job as discussed below, but not suffi-
ciently beneficial. Therefore we confine our attention to
the form (6.5).

Figures 1 and 2 illustrate how well our global rep-
resentation (6.5) does in reproducing the Thomas-Fermi
pressure results for aluminum. The reader is reminded
that all the Thomas-Fermi quantities simply scale as a
function of the nuclear charge® so except for differently
scaled ranges of temperature, density and pressure, the
results are the same for all elements. Over a substantial,
many-decade sized region we have 5 % or better accuracy.
Globaly there are two regions in which the accuracy de-
teriorates to 20 % or worse.

VII. GLOBAL REPRESENTATION OF THE
ELECTRON FLUID PRESSURE

In this section we review the ingredients which went
into the representation for the Thomas-Fermi fluid pres-
sure in the previous section with an eye to replacing them



with accurate determinations of the analogous quantities
for a fluid of electrons and ions. First of all the ideal gas
pressure, which is the leading order in the small y expan-
sion (3.10) remains unchanged. In addition the coefficient
of y! also remains correctly given as zero. The coefficient
of y? is artificial in the Thomas-Fermi model. The correct
value here is known to be the electron-exchange correc-
tion. It is the leading order perturbation away from the
ideal Fermi gas in powers of the electronic charge e. In
fact this perturbation has been carried out by the method
of finite-temperature Green’s functions by Abrikosov, et
al.1® and the result that they obtain is the same as that
written down previously by Cowan and Ashkin. Tt is,

1tVY2
Peyen 167T€ m?kT/ / log \/\/y:l \/\/y:2 dy; dy>
ET

ey1 n+1(eyo 97+1)
(7.1

where, as this result is a perturbation off the ideal Fermi
gas of electrons, 1 will be the constant value A(¢) deter-
mined by (2.13) and (3.9), independent of the radius r.
To compute this exchange correction we need to evaluate
the function,

xo=["[

In order to do this evaluation, we first make the substi-
tution, y; = t2, so we get,
log

X(Q) = 4/000 /0°° (e + 1)(e 7+ 1)

and expand the denominators in a power series as,

VYTV
VYL —VY2

eyl m+ ]_)(cyZ m 4 1)

log dyl dyo

(7.2)

%‘ t1todty dis

(7.3)

X(¢) = (—1)mtm / / tito dty dity
n1 ng= l
. t1 +1 ,
x exp((n1 + n2)n — n1t] — nats) log SELILCA (7.4)
— 1
If we now make the change to polar coordinates,
rcos¢ = \/nity, rsing = \/nata, (7.5)

the integrals factor into the product of two one-dimensional

integrals,
b (_ n1+n2 /C’O P
X(¢) =2 "d
=2 >, =] e
nyma=1
z 1+ Z—;tanqﬁ
x/ sin 2¢ log | —————| d¢,
0 1=/t tang
_ f: (_Z:)nl‘f'ﬂz
ny1,ng=1 ning
z 1+ ,/M tang
x/ sin 2¢ log - de,
0 1— /7t tang (7.6)

10

where z = € as at (4.1). Since the n; ny and ny ny
always appear symmetrically, we may as well sum the
symmetrical pairs first. When we do this operation the
integrals in the sum become, after the use of some simple
trigonometric identities,

. 1+ Asin 2¢
2¢log | —————| d 7.7
/0 sin 2¢ log 1—/\sin2¢‘ P (7.7)
where )
ny na \
=>4/ =+ ) >0 .
2( no + ny ) (78)

Now the integral (7.7) can be further re-expressed as

1[5 0 (14 re®)(1+re=)
- v ") log de, (7.9
4/;g (%) Og‘(l—reze)(l—r —if) (7.9)
where 5
r
A= —. 1
1472 (7.10)

For the case A < 1 which in turn implies that r < 1, (7.9)
can be expanded in powers of r and using the observation

that .
2 .
/ eZn'nr — 07 n ;é 07

one finds directly that the integral (7.9) is just 7r. For
the case which we seek, A > 1, the same result is ob-

(7.11)

tained, when the absolute value signs in (7.9) are re-
moved. It turns out that for our case, the answer is just
the real part always. That is,

7 1+ Asin 2¢
2¢log | ————— | d
/0 sin 2 log 1—Asin2¢‘ ¢
M1-VIZR)A A<L oy
= /A, A>T :
Thus, substituting into (7.6), we get,
( Z)”H—nz )
X(¢) = _ 7.13
(€)= wz e
It is interesting to note that by (7.13),
dx > y\nitne
AXQ) | § (e
dz i NI
2
S (—z)“)
T —Z =(I_1(n) (7.14)
((S5F) =)

where I,,(n) is defined by (2.2). If we use the connection
between z and ¢ (3.9) and the relation (4.6), we can re-
express X directly in terms of ( as,

T dT

¢
X(¢) = /0 st (7.15)



From the asymptotic behavior of g({) as { = co we can
derive,

3ﬁ>% i, (7.16)

x(o =2 (27

which allows the computation of g2(¢) via (7.1).

Following the results of Gell-Mann and Brueckner,!!
we believe it is quite possible to give the Debye-Huckel
correction, gs(({), exactly for general ¢, but have not yet
done so. If this task were done, following the same meth-
ods as in Sec. IV, one could produce the necessary exact
expansions about the hot-curve for the pressure, internal
energy, Helmholtz free energy, etc. that we gave in Sec.
IV for the Thomas-Fermi model.

Next we consider the ingredients used near T' = 0.
Specifically, these were the cold-curve, i.e., the pressure
as a function of the density, and the leading correction in
temperature, given by (5.20). For a realistic case these
quantities are hard to calculate from first principles, but
one can measure them and fit the results to one’s fa-
vorite model. We need the cold curve (electron pressure
as a function of density at zero temperature) and the
leading correction in temperature. This quantity may be
estimated for example (when the electronic specific heat
vanishes linearly with temperature) from the relation,

o’pP

77|, (7.17)

=1 Jm, v/,

where v is the Grineisen parameter. With these deter-
minations of the H; in (6.4), we are again in a position
to compute the pressure representation (6.5), this time
for realistic materials. It will have the correct limit-
ing behavior near the hot curve and the observed be-
havior near the cold curve. In between we expect it
to extrapolate in a reasonable manner. If the Thomas-
Fermi theory is a good guide, this region is a, relatively
speaking, fairly small (but rather important) one. In
the low-temperature low-density region, such effects as
phase transitions, due to changes of state or ionization
of a few electrons, atomic shell structure and so forth
would at present have to be built in as a correction to
the reference function on a individual substance basis
as might be appropriate. These effects are, of course,
also extremely important in the regions near normal den-
sity and low temperature. Reference functions for other
thermodynamic functions such as internal energy and the
Helmholtz free energy can be constructed, we believe, by
the same methods.

Finally there remains the computation of the degree
of ionization for problems which include the exchange
correction. Again the definition is somewhat arbitrary.
For example, the Thomas-Fermi-Dirac model at T" = 0
leads? to a finite, atomic-surface electron-density at zero
pressure. Thus in the presence of the exchange correction
the simple idea used in Sec. III to determine the number
of ionized electrons will require adjustment. Plainly, as

11

the pressure drops to zero, the number of ionized elec-
trons should also fall to zero proportionally.

The pressure, including just the ideal gas pressure
and the exchange correction, is, by (3.4) and (7.1-2),

PQ 16we2m2kT)
or following the method of (3.5),
P R\ * 4e’m
— () =) = —2" x(¢).
kT (271_ka> ng(gz) 3h(27l’ka)5l (Cz)
(7.19)

Now as long as T is large enough so that the coefficient
of X(¢{;) is not too large, since g(0) = 1, X(0) = 0,
and since as ¢; = oo (ig({) Ci%, X x Ci%, the pre-
dicted pressure in (7.19) will stay positive. However if
T is small enough, the electron gas pressure given by
(7.19) can be negative. This strange situation arises from
the artificial split of the electron-electron energy into an
exchange energy and a potential energy. The electron-
electron potential is in turn paired with the ion-electron
potential energy for convenience in the usual central field
approach, which is common to the Thomas-Fermi model
and related approaches. The total pressure, so calcu-
lated, should, of course, be non-negative. We know that
(7.19) is good near the hot curve in the sense that it
is a correct perturbation expansion. If we use the Padé
method,® we are lead to,

hZ

r ' Gig(Gi)
2ET \ 2rmkT N 14+

seim  X(G) — f(G.T).
3h(2mmkT) 3 Ci9(C)

(7.20)
This form retains the accuracy in the neighborhood of
the hot curve where after all we expect there to be high
ionization. As T — 0 for fixed density, the exchange
correction in the denominator is proportional to rp so
the form reduces to the ideal Fermi gas result in the high
density limit, but has relatively stronger ionization in
the dilute case for the same pressure. It has the physical
property that we described above that P = 0 corresponds
to ¢; = 0 and vice versa. Thus, following (3.6), we obtain
the formula,

:87rrg 2nmkT %fﬂ P h? 3 T
3 h2 2kT | 2emkT | ’

(7.21)
where the inverse is with respect to the argument (; with
T held fixed. This result should provide good accuracy
for Z; in the strongly ionized regions and will take Z;
to zero when the pressure is much less than that for the
ideal Fermi gas, as expected.

Z;
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Figure Captions

1. Comparison of the Thomas-Fermi pressure with
our global representation for aluminum. The solid
lines are the isotherms for the Thomas-Fermi pres-
sure, while the broken curves are our representation.
Shown is the high density region in (a) and the
low density region in (b) with temperatures rang-
ing from zero to 1.16 x 10° degrees Kelvin. Away
from zero temperature the isotherms are essentially
equally

spaced in the logarithm, with the lowest nonzero
temperature being 5.8 x 10° degrees Kelvin. In (a)
a number of isotherms are coincident with that for
zero temperature.

2. Rough contours of percentage errors. The con-
tours for percentage differences between the exact
Thomas-Fermi and our global representation (6.5)
in the pressure for aluminum are shown from —20 %
through +20 %. The —1 % and —10 % contours are
not labeled but can be inferred from their location
relative to the other contours. On a plus contour,
the Thomas-Fermi pressure is higher than that for
our global representation.



